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Abstract-—The momentum and heat transfer between a fully developed turbulent fluid flow and a moving

core of fluid or solid body in concentric annular geometry is studied analytically based on a modified

turbulence model. The heating condition is a uniform heat flux at the core tube only. The effects of various

parameters such as the relative velocity, the radius ratio, etc. on friction factor and Nusselt number are
investigated.

1. INTRODUCTION

ProprLems involving fluid flow and a moving core
of ttuid or solid body in an annular geometry are
encountered in some practical situations. A train trav-
elling at high speed in a long tunnel (such as the 54 km
long Seikan tunnel in Japan, the proposed Channel
Tunnel between England and France [1] or the pro-
posed Northumberland Strait undersea tunnel linking
Prince Edward Island and New Brunswick in eastern
Canada), where a significant amount of thermal
energy may be transferred to the tunnel environment.
In certain manufacturing processes such as extrusion,
hot rolling and drawing, a hot plate or cylindrical
rod continuously exchanges heat with the surrounding
environment. The inverted annular film boiling which
takes place during the emergency core cooling of
nuclear fuel channels {2] is another example which
involves such fluid flow and heat transfer phenomena.
For such cases, there seems to be no reliable prediction
for momentum and heat transfer available in the
literature.

In this paper. a new basic flow model, essential
for the heat transfer analysis, is presented and the
resulting momentum and heat transfer are discussed
in terms of various parameters, such as the relative
velocity, the radius ratio, fluid Reynolds number,
ete.

2. ANALYSIS

In order to predict temperature distribution and
heat transfer rates. it is necessary to predict velocity
field and shear stress distribution in the gap between
the stationary surface and the moving core. A simple
modified mixing length model for flow turbulence is
used for the analysis. The mathematical development
of the analysis is straightforward but more inter-
mediate details can be easily deduced from some
standard reference books such as that by Kays and
Crawford [3].

2.1. Assumptions (see Fig. )

(1) The annulus s concentric and both the wall
surfaces are smooth. The heating condition 15 a uni-
form heat flux at the core tube only.

(i1) Velocity and temperature fields in the annulus
are fully developed.

(iii) The axial pressure gradient is sufficiently large
so that there exists a maximum velocity within the
annulus.

(iv) The line of the maximum velocity coincides
with the line of the zero shear stress.

(v) For the momentum eddy diffusivity. &, the
model by van Driest for the sublayer and that of
Reichardt for the fully turbulent region are used.

(vi) The turbulent Prandtl number 1s either constant
or a known function.

2.2. Velocity and temperature distributions

For the velocity and temperature distributions, use
is made of the concept of eddy ditfusivity. & and the
turbulent Prandtl number, Pr,. The basic equations
governing the transport of momentum and healt can
thus be written as

T Cu,
<= (\+€,\1)Tf (hH
¢ o

—~-—]—»=(1+3H —- (2)
cp

Equation (1) can be nondimensionalized as

cu” sl (ti78); 7
L T4 (ewiy),

} 0< <t (3)

where from a force balance, the shear stress dis-
tribution is

(i) U= EAL QAN
) 044,
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NOMENCLATURE

van Driest’s constant Greek symbols
¢ specific heat o radius ratio, R/R,; thermal diffusivity
f friction factor 9; |Ra—R}
h heat transfer coefficient ¥ ()
k thermal conductivity A, O /RS
K  von Karman’s constant £ eddy diffusivity
Nu  Nusselt number P AL
P pressure v viscosity
Pr  Prandt! number p density
Pr, turbulent Prandtl number 1 shear stress.
q heat flux
r radial coordinate, R+ y; Subscripts

or R,~y, b bulk
R radius H heat
R*  Rtelp) /v i inner
Re  Reynolds number J ioro
T temperature m  corresponding to the maximum velocity
TS (Tg— E)CTR//[‘]R,(TR//P)O'S] point
u velocity in the x-direction M  momentum
wt uf(te/p))’ 0 outer
u, (talp)®? R radius
U*  Ul(tg/p)™* $ at sublayer boundary
U* dimensionless relative velocity, t turbulent.

Ulu,
¥ coordinate Superscript

o y(tRlp) Jao + quantity nondimensionalized.

where +ve forj =1, —ve forj = 0, and
G=yr18, A =6 /R".
The initial conditions for equation (3) are
utr =U%at{,=0anduf =0at{, =0.

Equation (2) can also be nondimensionalized as

0T} _ 4 ppoge [ (4/9z) ]
3, T TR (PriPr) vy,
o< <) 4)

where +ve for j=1 and —ve for j = o. Since the
heating condition is a uniform heat flux at the core
tube only, the heat flux distributions are obtained

from an energy balance as
1—2*(1+AL)?
(g:/98) = A= 5A0) Oo<g<

and

a(z_AoCo)AoCo N

=T < <)

(qo/qk,) (l _12)(1 —Ao:o) (0 Co 1)
The initial conditions for equation (4) are

Tr=0at{,=0and T} =Tt at{, = 1.

The dimensionless velocity and temperature dis-
tributions in the inner and outer regions of the

maximum velocity (see Fig. 1) can now be obtained
by solving these dimensionless differential equations,
equations (3) and (4), respectively, once the eddy
diffusivities and the matching conditions are estab-
lished.

2.3. Eddy diffusivity for momentum, &y

For the eddy diffusivity for momentum, gy, the
models originally due to van Driest [4] and Reichardt
[5] were modified to suit the present flow channel
geometry as:

Sor sublayers (0 < y/ < y?)
(em/V); = Kly [t —exp (=37 [AD 10wt [0y 1

&)
Sor fully turbulent layers (y5 <y <6;)
(em/v); = [(K;87)/61(1 = (1 =y} /87 )11
+2(1=y7/67)%). (6)

Equations (5) and (6) are further reduced as:

Jor (0 < (< G)

(A
s e\ 0.5
—exp <-l7,%-)] (I’/TR)'} ] "

N =
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FiG. 1. Idealized model.
where
;is = .“/:' ’/(5/4- ;

for Gu< <)

(en v), = [(K67)/61C,(2=0)(3-45+257). (8)

2.4. Revnolds number, friction factor and Nusselt
number

Now that the eddy diffusivities, (&y/v), are known
for the entire fluid regions, the velocity and tem-
perature profiles can be derived. The Reynolds
number, friction factor, heat transfer coefficient
and Nusselt number are defined in the usual way as
follows.

Reynolds number

Re = flh . 2(Ro _R|)

Vv

®

where u, is the average velocity defined by

1 R, R,
Uy = ————37 w;2nr dr+ u,2nr dr:| .
" n(R; - RY) [L J;m

(10)

Introducing the dimensionless parameter. u, can be
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rewritten as

N2 s [ A o
U, = RN o J“ (1+A ™ dd

l t
+~¢55J (1=A0)u; d;,]. (1)
x 0 .

Therefore, in dimensionless parameters

4 ! . .
ke= ,:H—][OJ (e d

| .
+ o, j (1 =A< )ul d;,]A (12)
il -

: (RO—R,)( dP)
e e §
oug dx,

Equation (13), in conjunction with a force balance,
can be given in a dimensionless form as

g ([L=(l ][+ T itn)] ‘RN 14
C a0

Friction factor

(13)

/

Nusselt number

. h2(R,—R) <
Ny = —— - (15
k
where
h=qp/(Ty =T,
The bulk temperature. 7. is defined as
R, [k,
T, = J ruT dr; J rue dr. (16)
R, C IR

T, can be expressed in dimensionless form as
(TR, - Tb)"fk‘

[N

- A‘/R,(TR 'p)

4 1) e o
= [T;:KE [10. J‘) (T+ADu T d5

/

TR, 0.5 1
+1—) 05| (1=AL)us Ty dL 1. (1D
TR‘, 0

Therefore, the Nusselt number may be calculated

from
-
X T,

2.5. Matching and other conditions
The matching conditions for the analysis given
above are given below.

(18}

(1) Shear stresses.
From a force balance

TRl~ IN/R.—R;
T \%/\R;—R.)
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(ii) Relationship between K and K..

Although the mechanism of the flow outside of the
radius of maximum velocity is very similar to that
occurring in circular pipe flow, this is not true for the
flow inside of the radius of the maximum velocity [6].
It is now well established that the standard universal
velocity is not fully adequate for the inner velocity
distribution of a concentric annulus [7, 8]. Therefore,
while a fixed value of 0.4 for K, is taken in the analysis,
the value of K, has to be calculated. From the con-
tinuity of the eddy diffusivity at the location of the
maximum velocity (r = R, or {; ={, = 1), we may
obtain the following relation from equation (8):

K 4

— =, 20

K, & (20)
(iii) Relationship between u;}, and uj,.
From the continuity of velocities at the location of

the maximum velocity (r = R,or{i=(,=1)

T \O'5
ut, = (_> ul,. 2D
T,
(iv) Relationship between U* and U*.
21— U* R
o o
U < R . (22)

(v) Relationship between T, and T,.
From the equality of temperature at the location of
maximum velocity (i.e. r=R,or{={,=1)

Tom = (TRG/TRE)O'STiTn- (23)
3. CALCULATION

To solve the equations given above, the following
input and fixed parameters are provided for the
calculation.

T. SHIGECHI et al.

3.1. Input parameters

2= R/R, —0.01,02,04,0.6,0.8 and 0.99

R™ = Ru,/v—in terms of Re; 10*-10°

U* = Ulu,; —in terms of U*; 0, 0.2, 0.4, 0.6, 0.8
and 1.0

Pr —0.01,0.1,0.72, 1.0, 2, 5, 10 and 100

Pr, —fixed at one for this paper.

3.2. Fixed parameters

K, = 0.4 (von Karman'’s constant for outer region)

A} =26 (van Driest damping parameter for outer
region)

A7 = 26 (van Driest damping parameter for inner
region)

¥3, = 26 (sublayer thickness for outer region}

17 = 26 (sublayer thickness for inner region).

4, RESULTS AND DISCUSSION

The predicted velocity profiles in the annular ducts
with the moving cores at various values of the relative
velocity are presented in Fig. 2. The dimensionless
velocity at the location of the maximum velocity does
not coincide for a given condition. This is due to the
different values of the wall shear stress at the walls, i.e.
at r= R, or {;={, = 1, the dimensionless velocity
uz, is related to u, through equation (21) and

24

As an example, the values of (tz/tz) at a Reynolds
number of 10° are calculated as a function of U* for
2 =10.2, 0.4, 0.6 and 0.8, and plotted in Fig. 3. The
changes in the value of R, as a function of x and U*
at a Reynolds number of 10° are also seen in Fig. 3.
In Fig. 4, the velocity profiles in both the inner

60 ———r——————r——— e S
a=0.8 U* = 1.0
2o e —
. )
L0r

F1G. 2. Dimensionless velocity profiles.
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U*

F1G. 3. Various relationships.

and outer regions are normalized by the maximum
velocity. The strong effect of the relative velocity on
the velocity profile in the inner region is now clearly
seen in the figure.

Examples of the predicted friction factor are shown
in Figs. 5 and 6. The values for the case of U* =0
(both walls stationary) are almost identical to the
results of the previous analytical and experimental
data [9]. This demonstrates the accuracy of the present
analysis. The effect of the relative velocity is clearly
shown in the figures.

The friction factor decreases with increasing values
of the relative velocity, U*, and the radius ratio, z, up
to a certain critical value and then starts to increase
again. However, the effect of the relative velocity
diminishes with the decreasing value of the radius
ratio and it was seen that at « = 0.01, the effect is
hardly seen at all. This is easily understandable
because with decreasing value of x, the role of the
shear stress of the inner surface on the overall pressure
drop becomes less important.

Representative non-dimensional temperature pro-
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F1G. 7. Dimensionless temperature profiles: inner region.

files in the inncr region of a concentric annulus with
the moving core are shown in Fig. 7. The condition
is for uniform heat tflux at the core. The effect of the
relative velocity can be clearly seen in the figure. The
same temperature profiles of Fig. 7 are plotted in Fig.
& in terms of normalized wall distance, {. As was
seen in Fig. 2, the dimensionless temperature at the
location of the maximum velocity does not coincide
for a given condition and this is because different
values of the wall shear stress at the walls were used
in the dimensionless temperature parameters. That is,
at r = R, or {; ={, = 1, the dimensionless velocity
T .. is related to T, through equation (23) and

Ty oFX\eTH
o B o0r) &
The values of (8*/0) = (K,/K;) at a Reynolds

number of 10° are calculated as a function of U* for
z = 0.2,0.4, 0.6 and 0.8, and plotted in Fig. 3.

(25

Predicted Nusselt numbers for two annuli having x
of 0.2 and 0.8 are plotted against Revnolds number
in Figs. 9 and 10, respectively, for various values of
the relative velocity at a Prandtl number of 0.72. The
effect of the relative velocity is scen to decrease with
decreasing value of x as was the case of the effect on
the friction factor shown in Figs. 5 and 6. However,
the effect of the relative velocity on heat transfer is the
opposite of that of friction factor ; i.e. the heat transfer
increases with increasing value of the relauve velocity.

In Figs. 9 and 10. the analytical study of Kays and
Leung [10]} of concentric annuli with stationary cores
(i.e. U* = 0) when the inner core alone is heated is
compared with that of the present analysis. Despite
the different method of analysis emploved. the agree-
ment is very good for the range of parameters studied.

The effects of the radius ratio and Prandtl number
on the fully developed Nusselt number at {* = 1 arc
shown in Figs. 11 and 12, respectively. as examples.
The effect of the radius ratio on heat transfer is similar

O0 05

CO

FiG. 8. Dimensionless temperature profiles: inner and outer regions.
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to thut for the case of U'* = 0, 1.e. the lower the radius
ratio. the higher the heat transfer rate but the effect is
relatively minor. The effect of Prandtl number on
Nusselt number ts again similar to that for the case of
an annulus with a stationary core tube, that is, the
Nusselt number increases with increasing values of
Prandtl number.

5. CONCLUDING REMARKS

The effects of various parameters such as relative
velocity, radius ratio, etc. on the friction factor and
Nusselt number for concentric annuli with moving
cores have been analyzed.

The study showed that for equal conditions.
increasing relative velocities were observed for the
following changes:

---decrease in friction factor and
increase in Nusselt number.

However, the effect of the relative velocity seems to
diminish with decreasing value of the radius ratio.
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ECOULEMENT TURBULENT ET TRANSFERT THERMIQUE DANS DES ESPACES
ANNULAIRES AVEC COEUR MOBILE

Résumé—Le transfert de quantité de mouvement et de chaleur entre un fluide en écoulement turbulent

établi et un coeur mobile de fluide ou de solide, dans une géométrie annulaire concentrique, est etudie

analytiquement a partir d’'un modéle modifié de turbulence. La condition de chauffage est celle d'un fiux

thermique uniforme sur le tube central. On étudie les effets des parameétres tels que la vitesse relative. le
rapport des rayons, etc. sur le coefficient de frottement et le nombre de Nusselt.

TURBULENTE STROMUNG UND WARMEUBERGANG IN EINEM
KONZENTRISCHEN RINGSPALT MIT BEWEGTEM KERN

Zusammenfassung—Die Impuls- und Wirme-Ubertragung zwischen einer vollstindig ausgebildeten. tur-
bulenten Fluidstréomung und einem bewegten Kern (ebenfalls fluid oder fest) wird fiir eine Anordnung als
konzentrischer Ringspalt analytisch untersucht. Dabei wird ein modifiziertes Turbulenzmodell angewandt.
Als Randbedingung am Kern wird aufgeprigte Wiarmestromdichte angenommen. Der Einflul von Rela-
tivgeschwindigkeit, Radienverhiltnis, usw. auf den Reibungsbeiwert und die Nusselt-Zahl wird untersucht.

TYPBYJIEHTHOE TEYEHHUE XHUJIKOCTH U TEMJIOINIEPEHOC B KOHUEHTPHUYECKHX
KOJIBUEBbIX KAHANTAX C ABHXYIUMCSA AOPOM

Amsoraums—Ha ocHoBe MoandHuMpoBaHHOH MojenM TypOYTEeHTHOCTH QHAIHTHYECKH HCCIedyeTcs

fIEPEHOC HMIMYJIbCA H TeMJla MEXAY MOAHOCTHEO Pa3BHTHIM TYpOy/TeHTHBIM TeYeHHEM XHIKOCTH H 1BH-

XYIHMCS AOPOM KHOKOCTH HJIH TBEPAOTO Tella B KOHUEHTPHYECKHX KO.IbLieBBIX kaHamax. Harpes

NIPOHCXOIHT B YCJOBHMAX MMOCTOSHHOIO TEIUTOBOTO MOTOKA Y LeHTpatbho# Tpy6ul. Hecnenyeres BiHanHe

Ha ko3hPHIHEHT TpeHHs H gHcno HycceabTa TakuMx mapameTpoB, KaK OTHOCHTEbHAs CKOPOCTh, OTHO-
UEHHE CKOpPOCTe U T. 1.



